تبلیغات
ریاضیات پایه و آموزش عالی - روشهای تدریس راهبردهای حل مسائل قسمت 1(قابل توجه همکاران محترم)
 
مرکز موسس: سما واحد کرمان


استاد: ناصر توحیدپور
  :: مدیر وب سایت : ناصر توحیدپور
» تعداد مطالب :
» تعداد نویسندگان :
» آخرین بروز رسانی :
» بازدید امروز :
» بازدید دیروز :
» بازدید این ماه :
» بازدید ماه قبل :
» بازدید کل :
» آخرین بازدید :

   

اولین وبسایت رسمی ریاضیات مراکز سمای ایران

روشهای تدریس راهبردهای حل مسائل قسمت 1(قابل توجه همکاران محترم)
جمعه 11 خرداد 1397 ساعت 08:46 ق.ظ | | نوشته ‌شده به دست ناصر توحیدپور | ( نظرات )

راهبردهای حل مساله

توضیح اولیه

حل مساله ، مهارتی مهم در درس ریاضی است . در اینجا با طرح چند مسئله برای دانش آموزان راهنمایی به توسعه مهارت حل مسئله آنان كمك می گردد.

 

اهداف

دانش آموزان قادر خواهند شد :
  • مجموعه ای از راهبردهای مناسب را در حل مسائل انتخاب كرده و بكار گیرند.
  • فرآیند حل مساله ریاضی را بازبینی و كنترل نمایند و در آن بیندیشند.
  • با دیگران بصورت منطقی و واضح در باره ی مسیر فکریشان گفتگو کنند.

روش تدریس

مسئله انبه در شكل شماره 1 مطرح شده است. قبل از مطالعه بقیه این طرح درس ، ابتدا مسئله را خوانده و به حل آن اقدام كنید. به چگونگی مراحل حل مسئله خود توجه نمایید. اگر گیج شده و موفق به حل نشدید ، در جستجوی راهبرد دیگری برای حل آن درآیید.

 

یك شب كه پادشاهی از گرسنگی ، نتوانست بخوابد به آشپزخانه سلطنتی رفت و در آنجا ظرفی پر از انبه یافت. چون گرسنه بود  انبه ها را خورد و به اتاقش بازگشت. كمی بعد در همان شب ، ملكه نیز از شدت گرسنگی نتوانست بخواند . بنابراین او نیز در آشپزخانه ، انبه ها را یافت و  انبه های باقیمانده را خورد. كمی بعد بزرگترین شاهزاده بیدار شد و  باقیمانده انبه ها را خورد.پس از او برادرش شاهزاده وسطی ،  انبه های باقیمانده را خورد.سرانجام كوچكترین برادر  انبه های باقیمانده را خورد . بدین ترتیب فقط 3 انبه برای خدمتكاران باقی ماند. در ابتدا چند انبه توی ظرف بود؟
راهبردهای حل مساله

 

مسئله انبه ، مورد علاقه معلمانی است كه مایلند توانایی های حل مسئله را در دانش آموزانشان توسعه دهند. زیرا دانش آموزان راهنمایی می توانند این مسئله را حداقل از 4 راهبرد متفاوت حل نمایند.( راهبردهای حدس و آزمایش ، رسم شكل ، زیر مساله ، و تشكیل معادله ) این مسئله ، مثالی عالی برای نمایش قدرت و غنای ریاضی هنگام بكارگیری راهبردهای چندگانه در حل مسئله می باشد.

از این مسئله همچنین می توان برای اهداف آموزشی متنوع مانند ارزشیابی استفاده كرد در مواقعی كه هدف ما از ارزشیابی ، توانایی دانش آموز در كاربرد راهبردهای متنوع باشد. همچنین با هدف استفاده از انواع راهبردها تا حد امكان ، از این مسئله می توان به عنوان تكلیف در كارگروهی مشاركتی بهره برد.

در مطالب زیر ، به هر یك از 4راهبرد مسئله انبه بصورت خلاصه می پردازیم همچنین تجربیات حاصل از اجرای عملی این راهبردها در كلاسها بیان می گردد ، دو تعمیم جالب برای مسئله پیشنهاد شده و مثالی از یك مسئله مشابه ( ملوان ها و نارگیل ها) در ادامه ی توسعه طرح درس برای بررسی بیشتر چهار راهبرد مذكور ، داده خواهد شد.

 

راهبرد حدس و آزمایش 

در این راهبرد دانش آموزان ابتدا تعداد اولیه انبه های داخل ظرف قبل از ورود پادشاه به آشپزخانه را حدس می زنند سپس آنها برای بررسی حدس خود ، آن را با اطلاعات داده شده در مسئله می سنجند. اگر حدسشان درست نباشد ، بار دوم حدس بهتری را ( با استدلال منطقی ) مشخص می كنند. این فرآیند همچنان ادامه می یابد تا به پاسخ درست مسئله برسند . احتمالا برخی از دانش آموزان حدس هایی می زنند كه غیرمعقول و نامربوط است .

 

در این موارد معلمان باید چگونگی آغاز یك حدس معقول را بدان ها خاطر نشان كنند و با آنها راجع به تشكیل جدولی برای ثبت و سازمان دهی اطلاعات مربوط به حدس های خویش ، صحبت نمایند.بدین ترتیب دانش آموزان براحتی از این راهبرد استفاده خواهند نمود.

 

تجربه عملی :

یكی از گروهها بسرعت فهمیدند كه حدس اولیه آنها باید بر 6 قابل قسمت باشد تا پادشاه بتواند  آن را بخورد و عدد 24 را به عنوان حدس اولیه بیان كردند اما در پایان مسئله 4 انبه به جای 3 انبه باقی ماند . بنابراین گروه فهمید كه تعداد اولیه 24 انبه زیاد بوده و حدس خود را به عدد 18 اصلاح كرد . گروه با آزمایش عدد 18 فهمید كه پاسخ صحیح مسئله است.

 

در گروه دیگری كه آنها هم فهمیدند حدس اولیه باید بر 6 قابل قسمت باشد ، عدد 12 را پیشنهاد كردند. باآزمایش این عدد ، در پایان فقط 2 انبه باقی ماند. سپس انها به عدد بعدی قابل قسمت بر 6 یعنی 18 رسیدند.

 

برخی از گروهها درنیافتند كه پاسخ باید بر 6 بخش پذیر باشد. آنها با حدس اعداد 16 و 14 نتوانستند بصورت دستی تقسیمات مسئله را انجام دهند و از ماشین حساب كمك گرفتند.

 

حدس اولیه یكی از گروهها 1000 بود كه به 100 ، 30 ، 20 ، 19 و 18 اصلاح شد. آنها برای حدس اولیه خود از هیچ منطقی استفاده نكردند جز اینكه پس از آزمایش این حدس ، تعداد انبه های باقی مانده را بسیار زیاد یافتند.

 

راهبرد رسم شكل :

سهولت حل این مسئله با این راهبرد شگفت انگیز است. بدین منظور ابتدا مستطیلی رسم كنید كه نشان دهنده تعداد اولیه انبه ها باشد . چون پادشاه   انبه ها را خورده است ، مستطیل را به 6 قسمت تقسیم كرده و 1 قسمت آن را حذف كنید.

راهبردهای حل مساله

در اینصورت 5 قسمت مساوی باقی می ماند كه ملكه 1 قسمت آن را خورده است. بنابراین 1 قسمت از 5 قسمت را هم حذف می كنیم.

راهبردهای حل مساله

به همین ترتیب  شكل باقی مانده را برای شاهزاده بزرگ

راهبردهای حل مساله

و  شكل باقی مانده را برای شاهزاده وسطی

راهبردهای حل مساله

و  شكل باقی مانده را برای شاهزاده كوچكتر حذف می كنیم .

 

بدین ترتیب فقط 1 قسمت از مستطیل باقی می ماند كه معادل 3 انبه می باشد .

اگر هر قسمت از مستطیل معادل 3 انبه باشد پس كل مستطیل یعنی تعداد اولیه انبه ها 18 خواهد شد. 18= 3×6

با این راهبرد بصورت تصویری و ملموس ، می توان مراحل حل مسئله را بخوبی نشان داد.

 

تجربه عملی :

راهبردهای حل مساله
بیشتر دانش آموزانی كه از این راهبرد استفاده كردند ، دانش آموزان سالهای اول راهنمایی بودند . یكی از گروهها ابتدا 6 دایره مساوی رسم كرد و روی یكی از آنها نام پادشاه را نوشت سپس روی یكی از 5 دایره باقی مانده نام ملكه و بهمین ترتیب روی آخرین دایره ، تعداد انبه های باقیمانده یعنی عدد 3 را نوشت و با جمع زیر به پاسخ مسئله دست یافت . 18=3+3+3+3+3+3
راهبردهای حل مساله
گروه دیگری ، دایره ای رابه 6 قسمت مساوی تقسیم كرد و هر قسمت را به یكی از افراد خانواده سلطنتی نسبت داد و با محاسبه زیر به جواب مسئله رسید. 18= ( 3× 5 ) + 3
 

گروه دیگری نیز گرچه با روش مشابه حل كرد اما در پایان نتوانست با نسبت دادن عدد 3 به یك قسمت از دایره به پاسخ مسئله برسد و فقط عدد 3 را با تعداد قسمت های دایره یعنی 6 جمع كرد.




می توانید دیدگاه خود را بنویسید
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر
نظرات پس از تایید نشان داده خواهند شد.